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ABSTRACT

Credibility theory refers to the use of linear least-squares theory to ap-
proximate the Bayesian forecast of the mean of a future observation; families
are known where the credibility formula is exact Bayesian. Second-moment
forecasts are also of interest, for example, in assessing the precision of
the mean estimate. For some of these same families, the second-moment fore-
cast is exact in linear and quadratic functions of the sample mean. On the
other hand, for the normal distribution with normal-gamna prior on the mean
and variance, the exact forecast of the variance is a linear function of the
sample variance and the squared deviation of the sample mean from the prior
mean. BUhlmann has given a credibility approximation to the variance in
terms of the sample mean and sample variance.

-ln-this paper, we present a unified approach to estimating both first and
second moments of future observations using linear functions of the sample
mean and two sample second moments; the resulting least-squares analysis
requires the solution of a 3 x 3 linear system, using 11 prior moments from
the collective and giving joint predictions of all moments of interest.
Previously developed special cases follow immediately. For many analytic
models of interest, one can replace the 3-dimensional joint prediction with
three independent credibility forecasts using the "natural" statistics for
each moment.

..fr\

,I



CREDIBILITY APPROXIMATIONS FOR BAYESIAN
PREDICTION OF SECOND DMENTS

by

William S. Jewell and Reng Schnieper

0. INTRODUCTION

In applications of Bayesian prediction, it is often difficult or ex-

travagant to compute the entire predictive distribution; for example, the

underlying likelihood and prior densities may be empirical, with only a few

moments known with any degree of reliability. Also, the decision structure

may depend only upon the first few moments, instead of upon the total shape

of the predictive density. Finally, the need for repeated recalculation of

forecasting formulae may argue for simple, easy-to-compute results.

A case in point is actuarial science, where the fair premium (predic-

tive mean) is the point estimator of basic importance. To this may be added
I

fiuctuarion loadings, which are given functions of the predictive second

moment, the variance, or the standard deviation (see, e.g., Gerber (1980)).

Credibility theory is the name given by actuaries to approximations of

Bayesian predictors by formulae that are linear in the data, chosen to min-

imize quadratic Bayes risk. Thus, credibility formulae are linear least-

squares predictors, and are akin to the classical estimators of that type,

as to the linear filters used in electrical engineering.

The main emphasis of credibility theory thus far has been on approxi-

mating the predictive mean, under a wide variety of different model assump-

tions (see, inter alia, Norberg (1979), Jewell (1980)). For many simple

models used in practice, the linear credibility predictor of the mean is

exactly the Bayesian conditional mean; in other situations, the credibility

formula is usually quite robust.

. . .. . . . . .
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The related development of credibility formulae to predict second mo-

ment is much less developed, in part, because there exist no correspondingly

simple exact Bayesian predictive formulae, and, in part, because the least-

squares development of the credibility form is messy and tedious; this prob-

lem is the focus of this paper.

After reviewing the theory for exact and approximate forecasts of the

mean, we shall summarize the known exact results for second-moment predic-

tions. Then, after defining the various moments up to order four that are

needed in a second-moment prediction, we cast our one-dimensional problem

into a tnree-dimensional credibility formula that simultaneously finds point

predictors for the first and second moments of interest as linear combina-

tions of three "natural" statistics of the data. By analogy with tradi-

tional multidimensional credibility theory, we are then able to analyze the

asymptotic behaviour of the different prediction components, and to argue

for the robustness of simplified versions of these forecasts. Finally, we

consider various special cases that are important in modelling risk problems.
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1. BASIC MDEL AND NOTATION

Consider the usual Bayesian setup, in which a random observable, x

depends upon an unknown parameter, 6 , through a (discrete or continuous)

like ihood density, p(x 1 6) . In the experiment of interest, 6 is fixed

at some unknown and unobservable value 6 , but the parameter has a known

prior density, p(O) . The conditional moments of x , given 6 are:

(1.1) * (6) - E{(x)i 1 j) . (i - 1,2, ... )

If we were to attempt to predict x prior to observing any data, and with-

out knowing e , we would have to use the marginal density of x , p(x) -

E{p(x I e) f p(x I B)p(6)d6 , which has prior-to-data (marginal) moments:

(1.2) Mi M E{m (01) = E{(x) •

For convenience in the sequel, we also define higher order cross-moments

about the origin, such as:

(1.3) mi =Efmi()m ; E{m(e))mk(e)I ; etc.

explicitly permitting the indices to be repeated, e.g., mi 1  E{(ml())2} .

Thus, from the four conditional moments {mi(6) ; i - 1,2,3,4) , we can

form eleven marginal moments of order four or less:

(1.4) ( - {mI ;m2 ,mll;m3 ,m21 ,mllI;m4 ,m3 1,m22 ,m2 11 ,mllll.

Three central moments of order two deserve special symbols:
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22
e- EVG I n-=2 -=1 ; d-VE~i I ) "i 11 -=2m;

c -V{i} - e + d -m 2 - a,

where double operators and their corresponding operands are to be inter-

preted "inside-out." Central moments of higher order can also be defined.

Now suppose that n independent observations, V {x1 ,x2, .... xn ,

are drawn from the same likelihood density, p(x I 6) , with e fixed,

but unknown. From Bayes' law, the posterior-to-data parameter density is:

n
(1.6) p(e I l ) = P(Xu I 6)p(e)

uinl

and knowing this enables us to calculate the posterior-to-data predictive

density for the next observation, xn+l , as:

(1.7) p(Xn+1 I V) -fp(xn+l I O)p(e I D)de

This is, in fact, the predictive density for any future observation, assum-

ing that 8 does not change, and that no more information is available.

From our viewpoint, given V , the {Xn+lXn+2,xn+3, ... } are exchangeable

random variables; for example, the joint predictive density of (n+lXn+2)

is:

(1.8) P(xn+l92n+2 IV) -fP(xn+ 1  O)P(Xn+ 2 1 e)p(e I V)de .

(1.7) and (1.8) also have predictive moments analogous to (1.2), (1.3):

(1.9) a (D) - E{,n+ ID} ; m2 (V) - Ejcx+i IV ; ml(D) - E{XXn 2  V ) etc.,

1 xnl 2 n+.'nS



that can, in principle, be calculated exactly; however, analytic solutions

almost always require that p(x I e) and p(e) be chosen from among

naturaZ conjugate fmnileB. We now consider how approximate results can

be obtained for the predictive moments in (1.9).

I

I

I

I

. . .. . . . . . " . .. . . . . . . .. . . . . . " . . . . . . . . . . . . . . . . . . . . . . . . . m -n n
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2. CREDIBLE MEAN FORMULAE

Consider first the problem of calculating or approximating ml(D)

For many years, actuaries (in a different terminology) have been assuming

that this "experience-rated premium" was linear in the data, ab summarized

in the sample mean, x , x /n (it is clear from exchangeability argu-

ments that each of the samples, xu , should be weighted the same). Using

heuristic reasoning, they argued for the approximation:

(2.1) m1 (V) - E{x- 1 I V) t f(DV) - (1- x,)m, + zx,

i.e., the forecast, f*(V) , should be a convex combination of the "manual"

(prior) mean, mI , and the "experienced" mean, x . The "credibility

factor," zI , that weights these two means is, they argued:

(2.2) ZI - n01 +

where the "credibility time constant," no, , was to be chosen empirically.

This heuristic formula, used for many years, was considerably strengthened

by BUhlmann (1967), who showed that the best linear formula (in the least-

squares sense) to approximate the predictive mean m (V) was precisely

the credibility formula, f*(D) , but with the time constant computed
Iu

explicitly from the prior second moments:

2
( m2 -ill m2 - m1(2.3) n0-2 2w 2 d

mll - mi1  m11 - m1

Thus, a credibility predictor to approximate E{xn+1 I D} needs only

the first three components of (1.4), {ml;m2,mll} , instead of the com-

plete shape of the prior and likelihood densities.
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In fact, Bailey, Mayerson, and others had already shown in the '50s

that (2.1), (2.2), (2.3) was exactly 1 (D) for many "natural" p(x I e)

and p(8) used in Bayesian modelling. Jewell (1974a) then showed that, if

the likelihood were a member of the simple exponential family (for which x

is the sufficient statistic) over some space X

(2.) ~ xa(x)e-ex (x C X)
(2.4) p(x I e) - y(e) (xx

and p(6) were the natural conjugate prior to (2.4):

[Y Ol) 0 Ox01
(2.5) p(O) -[y)]-l-X0

g(n01 ,ox0 ) , (e ®)

over the maximal range ® for which the normalization g(nolx 0 1) is

finite, then, under a certain regularity condition (Jewell (1975)), (2.1)

is exact, with the hyperparameters n0 1  in (2.3) and (2.5) identical, and

with x0 - m n0 1 .

A simple argument also shows that, if the exponent Ox in (2.4) is

replaced by, say, et(x) , then the credibility form (2.1) again provides

an exact prediction for E{t(Xn+l ) I 0} as a linear combination of the

prior mean of the statistic, E{t(i)) , and the sample mean of the statistic

I t(Xu)/n . with appropriate redefinition of (2.3). For this, and other

reasons that will become clearer below, we feel that (2.1) is a robust

formula in most cases.

I
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3. EXACT RESULTS FOR SECOND MOMENTS

We now consider exact results that are known for the predictive

moments, m1 (D) , m2(D) , and mll(D) , concentrating on the most-studied

case, the simple exponential family.

It is well known that the combination (2.4), (2.5) is closed under

8apling, so that, posterior-to-data V , the hyperparameters in (2.5) are

replaced by:

(3.1) n0 1  no 1 + n ; Xo X0  + nx

Sinc 01 01 0n

Since ml - x01 /n01 1 it follows that the updated first moment is:

xl +n
(3.2) E{nI D} - ml(D) = 0+ n"- z)m + z ,

nl1 no01 +f 111I

which is simply (2.1), (2.2). It is also clear that the marginal second

moments must also involve only n0 1  and x01 , and that the predictive

second moments must be a function of only the sufficient statistic, x ,

but no further statement can be made about dependencies in general.

Jewell (1974a) tabulates d - d(n0 1 ,x0 1) for six of the examples given

below, whence one can easily get e - n0 1d(n01,x01) , c - (no + l)d(n 01,x01)

and hence:

m2 (D) - (n01 + 1 + n)d(n01 + n,x01 + nX) + m(2

(3.3)

m11 (D) - d(n0 1 + n,x01 + nx) + m2(D)

and, from these, the updated versions of the central moments c and d
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VGi.+ I V} " u2 (D) m2 (V)'
(3.4)

(34)"nc+ 1,n;x 2 I V} - ml,(V) - (

Example 1:

Let p(x 0 e) be Bernoulli(T) and p(w) be Beta(x0 1 ,n0 1 -X 01)

(0 - inOr- - 1)) , then:

x0 1 (n0 1 -x 0 1)
(3.5) d(nol'x0 1) 2 (n + 1)

n01 0

Example 2:

Let p(xI e) be Geometric(n) , and p(7) be Beta(x0 1,n01 + 1)

(6- nI) , then:

(3.6) dn x0 1 (x 0 1 + n0 1)

01, 0 1  2 (n 1)

01 1

Example 3:

Let p(x I 6) be Poisson(n) and p(7) be Gamma(x0 1,nl)

(8 - l n- ) , then:

(3.7) d(n 01 ,x 01 ) x 01

n01

Example 4:

Let p(xI e) be Exponential(e) , and p(O) be Gamma(n01 + 1,x01 )

then:
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2
xo1

(3.8) d(n 01

n0 1 (n0 l - 1)

Example 5:

Let p(x 0) be No m l r 2 2 im , ad p() No rma13lI Ol 2;2
-7 /s 0  , then:

2
so

(3.9) d(nolX01) W- (independent of x0 1)(3.9 d (o1 ,01) 01

Thus, in these examples from Jewell (1974a), d(n01 ,x0 1) , m1 (D) , m2 (D)

and m11 (D) are all linear, quadratic, or constant in x0 1  and hence in

x as well.

Morris (1982) refers to simple exponential likelihoods (2.4) in which

m2 (6) is at most a quadratic polynomial in m1 (e) as QVF-NEF; he shows

that the only members of this family are the five examples above, plus

Example 6, below, plus all of the related members found through linear

translation and convolution (Binomial, Pascal, Gamma, etc.).

Example 6:

The last member of this group is the Hyperbolic Secant density:

-ex x- [-w,+ae]
p(x I e) -(cos ) 2 cosh(wx/2) ® - - , +

for which

2 2
(3.10) d(nox " 201 01

n01 
-n0)
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This likelihood seems to be useful only in certain random-walk problems.

We should mention also that it is easy to construct members of the

simple exponential family in which the mean is a complicated function of

x , for example, by truncating the range of any of the above distributions.

To obtain dependency on x and other statistics, we must turn to

two-parameter families, of which the most popular is the normal density

with both the mean, u , and the precision, w , as random quantities.

Example 7:

Let

p(x ) - p(x I v,w) - Normal( -,w )

PM GmmaX0l V
p(w) 2~ ' 02- n 2

and

p( ,w) - Normal(20-. ,(now)- 1)

with a , xOl , x02 , and no, given hyperparameters. This family is

closed under sampling, with updating:

a2 ;R no, nol + n

(3.11)
2'o1 , x 01 + I xu ;x2 '0 2 + I x2

from which we find that (3.2) again holds, and that:

(3.12) d d(nolO,xol,x 0 2 )2 (2a - 2)[nOo 0  ] (2a- 2) C

where c e + d is the prior variance.
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For this example, we see that the updating will give exact second-moment

predictors that are quadratic in x and linear in x- x2u/n . Be-
U .1

cause the normal case is so important to least-squares approximations,

we also give the exact results corresponding to (3.4) in terms of the

2 .- 1 2sonple variance, s - n I (x u - x) 2 , the sample mean, x ,the prior

marginal variance, c , and the credibility factor, z1 :

VXn+1i P (no, + 1 + n)C{X 1 ;X+2  P}

(3.13) 2a 2
- ( -n2-+n')1  _ (1- zl)c + Zls + z1(1-lz)(m x)l

An important simplification occurs if the "natural" choice 2a n0 1 + 3

is made; note that this does not significantly restrict the choice of the

2-parameter Gamma, but does mean that there are only three distinct hyper-

parameters in all. (3.13) then simplifies to a generalized credibility

formula:

VfXn+1 I D} - (n01 + 1 + n)C{xn+l;xn+2  D}

(3.14)

S(- Z)C + z1 s2 + (1- z1)(m I - x)

This result is not new, but rearrangement into credibility form first

appeared in Jewell (1974a). The equivalent multidimensional formula

appears in Jewell (1974b) and Jewell (1983).

(3.14) is, in fact, equivalent to:

(3.15) E (-2 I D- m(D) z l)m 2 + zlx2

that is, the predictive second moment is exactly in credibility form with

the owne credibility factor as in (2.2), with obvious adjustments to the

prior mean and sample mean.[ .
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4. LEAST-SQUARES THEORY AND MULTIDIMENSIONAL CREDIBILITY

We now take a temporary detour to display some general results from

multidimensional credibility theory that will be used in the next section.

Suppose we have a vector-valued version of the Bayesian model of Section 1,

in which samples P - ...2 " ) of a vector-valued random variable,

, are to be used to predict a random vector, w . If we approximate

E64 I D) by a linear function of the vector-valued sample mean, - n

least-squares theory then shows that the best (vector-valued) predictor is:
I

(4.1) f(V) - (E{;) - ZE{QI) + Z - 2E{; I D}

where Z is a matrix of appropriate dimensions given by the solution of the

normaZ system of equations:

(4.2) zC{X;X C{W; }

(C is the matrix covariance operator).

Now suppose w is actually a future observation of the same random

vector, I , say j!- " n+l . Then these equations become:

(4.1') f(D) (I - Z)m + Z4 _ E{yn+l I D}

where I is the n x n unit matrix, Z is the square solution of:

(4.2') hr E) D h c

m is the prior mean vector, obtained from the conditional mean vector:
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m(e) -Elj e}

(4.3)

T - E{) - E~m(e))

and E and D are the two components of within-risk and between-risk

covariance, respectively:

_ - EC{j;Z I 01 ;V- _{();m(e);

(4.4)
C - c{E; _ + D

Thus, the credibility formula of Section 2 extends directly to the

multidimensional case, with a credibility matrix, Z , mixing the prior

mean, m , and the experience mean, The analogy is complete if we

assume D has an inverse and rearrange (4.2'):

(4.5) Z = nD(E +nD) - 1 n(nI + N) I ; N ED - ,

where N is now a matrix of time constants. Further details on this ex-

tension may be found in Jewell (1974b).

The accuracy of any forecast f(D) for yn+l is measured by the 5

diagonal terms of the expected squared-error matrix:

(4.6) E{[Zn+ - f(V))I[xn1 - f(D)]'[y;

note that the expectation is over all possible joint values of (yn+l;D)

However, since the latter are independent, given e , 0 can be decomposed

into:

" [n+l - -()][Xn+l- m(e)]'} + E([f(V) - m(6)[f_(V) - _=(e)1'i

(4.6') T
=E + , say,
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where we see the portion of the mse due to the inherent fluctuation of the

observable, and the use due to the approximation of the true mean, M(6)

by the approximation, f(D)

We know that the minimum values of the diagonal terms for 0 and T

are attained by picking the Bayesian predictive mean, m(V) - E{ n+1 t )

which, in general, leads to a nonlinear regression on the data. With a

linear forecast (4.1'), (4.2'), it is easy to show that, for any n

T - E[E + - - [ - - D[I - Z'] .

In most cases of interest, all terms of T will approach zero as n ap-

proaches infinity for any forecast, so that all forecasts are asymptotically

equivalent; in the linear case, it usually happens because Z approaches I

(see also (8.6)). Fortunately, a linear predictor also usually has small

mean-squared-error also for moderate n , even though f(D) is not exactly

the Bayesian predictive mean.

We now examine the use of (4.1'), (4.2') as an approximation for our

original one-dimensional problem of estimating second moments.
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5. ORGANIZING THE LEAST-SQUARES COMPUTATIONS

We return to the main problem of organizing credibility approximations

f2(V) and f11 (D) for m2(D) and m1 1 (D) of arbitrary distributions.

In view of the exact results in Section 3, it seems reasonable to restrict

the statistics to be used to linear and quadratic functions of the data;

however, there are several different ways to select statistics of this type.

After a great deal of experimentation, the authors have found that the

choices that give the simplest and clearest results are the "natural" first

and second moments about the origin:

(51 t (D1 D x 2 M ; tl(D) __ 1 xu X~
(5.1) tlCV) - n X ; t2() n u 1 n(n- 1) L. L X

for n > 2 . In other words, we set [ = [tl(D);t 2(V));t 11 (D)]' = t(D) in

(4.1). Note that this choice implicitly includes (x) 2

as well as the sample variance s2 = [(n- l)/n][t 2 (D) - til(D)]

As predictands, we can get all the forecasts of interest simuZtaneoueZu

by setting = x *i]' . Then, to get Z in (4.1), we need

only to compute the means in (4.1) and the two covariance matrices in (4.2).

This approach is thus similar to credibility regression modelling. (Hachemeister

(1974)).

For the means, we find easily:

E{ e = E{_ I e) rn(a) - 1ul(e);m 2(e);mn(el]',
(5.2)

E{Y} - E{w -m m [m1;m2 ;mll'.

, ,, m , m , • . . . . . .. . I
i

i i . . .. .. . . . . . .. ... . .. . . . . . . .. .. .
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(Note that m.l(e) - 1(8) .) Computation of the covariance terms is straight-

forward, but tedious, as they involve all 11 moments of (1.4); we find, for

n > 2:

n

where D and E(n) are new matrices, analogous to the matrices in (4.4),

but otherwise unrelated. Explicitly, we find:

2
ro ii ' m 2 1 - 2m mll llm

(5.4) D i n2 2 -im 2 1 1 -i m2 l

(synetric) mll1 1 - 2

and

(5.5) E(n) -E0 +--1 E1 ;

where
p

m2  ml m3 - m2 2(m2 - ml )
~2 ~ 1 1  i 3 -i 2 1  2 l

(5.6) E = i4 - m2 2  2(m 31 - m 2 1 1)

(symnetric) 4(m 211 - 1 1 1 1 )

and

00 01

(5.7) El - 0 0

0 2(m22 - 2m 211 + mll1 l1 1

L1
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Once these have been computed, the credibility matrix Z is the solution

of:

(5.8) Z(D + E((n)) - D

and the vector forecast f(D) - [f1(D);f 2 (D);f11 ()]' is given by:

(5.9) f(V) - (I - z)m + Zt(V)

which should be compared with (4.1'), (4.2').

i b

i I

II
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6. INDEPENDENT FORECASTS USING NATURAL STATISTICS

Before examining the various aspects of the three-dimensional fore-

cast (5.9), it is of interest to consider first how the one-dimensional

result (2.1) would generalize if second-moment forecasts were made only in

terms of their "natural" statistics, i.e., if the solution to Z were

forced to be diagonal. We find:

M(D) E 2 I = () - (1 - z2 )m2 + z 2 t 2 (V)

(6.1)
n m 4- m22z 2  -

2 no + n n 2  2 2
02 in2 2  M

and, for n > 2

m11(V) = E{xnXn+2 I D} : f*1 (V) " (i - z,,)m,, + z,,t,,(V) ;

(6.2) n 4(m21 - 1111) + (m - 2m211 + m1 1 1 1 )

Z 1 n+n n (n) ; nOil(n) = 2

011m 1 1 1 1 - m1 1

These are to be compared with (2.1), (2.2), (2.3), which, of course, still

hold for the first-moment forecast. (Note that asterisks distinguish the

independent forecasts f,f2, and fl* from the corresponding components

of the joint forecast f , and that z1 1  in (6.2) is not the (1,1) s t

component of Z in (4.2').) We will return to analysis of independent

forecasts in Section 9, after analyzing the asymptotic behaviors of (5.8),

(5.9).
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7. LIMITING BEHAVIOR OF THE JOINT FORECAST

The analogy with (4.5) is complete if we can assume that D has an

inverse (but see Section 8), for then (5.8) can be rearranged into:

(7.1) Z - n(nI + N(n))- I ; N(n) - E(n)D-

so that we now have a time-varying "time constant":

(7.2) N(n) - N + I N ; N - ED 1  . 1 ED -

Because of the simple form of E, it follows that N 1 induces correction

terms only in the third row of Z , that is, in making a prediction of

m11 (D) ; furthermore, this correction term vanishes rapidly with increasing

n . In fact, one can easily make the asymptotic expansion:

(7.3) Z - I -  N + -1 2_
n

-2

so that the correction term N introduces changes only of order n or

smaller.

More importantly, we see that, if D -  exists, then Z - I as n - ;

thus our three-dimensional forecasts become "fully credible," that is, the

forecasts fi(D) are ultimately given essentially by their own natural

statistics, ti(D) (i - 1,2,11) . Asymptotically, then, the joint predic-

tions of Section 5 will be undistinguishable from the independent forms of

the last section.
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8. REDUCED-RANK D MATRIX

It would be an unusual model for which E did not have an inverse;

however, it is theoretically possible that D- 1  does not exist. In several

of the special cases examined below, D is of rank two because of the close

asymptotic relationship between t2 (V) and t11 (V) . Thus, to perform the

inversion in (5.10), we must use the well-known matrix inversion formula

which states that, if a and b are n x k matrices of rank k (k < n)

then:

(8.1) [1n + ab'
1  I - a[I k + b'a]-_'

p3 1 2
If D is of rank two so that, for example, d a d31d + a32_

where di  is the ith row of D = (i = 1,2,3) , then D can be written:

(8.2) D= [ A
1 2 , say.

31 a3

We find from (8.1) that:

(8.3) z A _(n) + 1 D 12 E(n)- 1

where A(n) is the full-rank 2 x 2 matrix:

(8.4) A(n) - D1 2E(n)- .

The important implication of these results is that, when D is of rank two,

the limit of Z(n) as n- = is not 13 , but is:

. . . .. . . . . . . . . . ..pI . . . . 1 . . .timnt
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(8.5) Z(-) O- ) -1E 1

Thus, in this case, the t (V) are never "fully credible" for the f (V)
ii

and dependence upon the prior means, m, (i - 1,2,11) , and other moments,

persists. In fact, Z(-) is not even diagonal!

Nevertheless, from (8.3), (8.4), it is easy to show that:

_ 12

(8.6) (I - Z)D = 1 -( 2 -D 1

so that, from (9.1), it follows that the mean-squared-errors of the predic-

tions will vanish even in this case!!

iS

• • . . .. .. . f I II I . . ... II I- •.. . . . . . . . . . .. .... . .. . . .
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9. MEAN-SQUARED ERROR. COMPARISON OF THREE-DIMENSIONAL FORECASTS WITH
INDEPENDENT FORECASTS USING NATURAL STATISTICS

For completeness, we record that the form (4.7) still gives the mean-

squared-error for the joint first and second-moment forecast, provided that

the definitions (5.4) through (5.8) are used:

(9.1) T - E{[f(b) - _(8)][f(V) - m(e)]'} - [I - Z]D

The diagonal terms of this matrix then measure the approximation errors of

the various forecasts, call them mse(fi(D)) (i - 1,2,11) . Assuming for

the moment that D is regular, it follows from (7.3) and (9.1) that, as

(9.2) T E - E +0

-n 2_oo(3n

which shows how quickly the mse's vanish.

There are several arguments in favor of replacing the three-dimensional

forecasts (5.9) with their independent counterparts (2.1), (6.1) and (6.2):

(a) Computation of joint forecast requires the numerical inversion

of a 3 x 3 matrix;

(b) Joint forecasts require the estimation of all 11 moments (1.4),

whereas independent forecasts use only seven moments

[ml1;m2 'mll;m4 'm2 2'm211,mllll]

(c) The independent credibility forms are intuitively more appealing

with their similarity and known dependence upon n , compared

with the joint forecast with its complicated dependence upon n
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On the other hand, we expect that changing to independent forecasts will in-

crease the mean-squared-error in each forecast, in general. However, in the

numerical examples of Section 11, we find that this numerical difference is

usually negligible, at least in absolute value. We now investigate general

conditions under which this might be expected to hold true, at least for

moderately high values of n .

Let dii I ei , and eiii (i - 1,2,3) denote the diagonal elements

of D , E , and E1  respectively (only e1 33 # 0). From (9.1), which
D

also holds in the one-dimensional case, and (2.1), we find:

(9.3) mse(fD(V)) E E{f*(b) - ml(a)) . (I -

e 1 e2 d- I (
n ewll 2 e-ll ll (Ann

Similarly:

1 1 2 -1 Il\
(9.4) mse(f*(V)) = (I - z2)d22  e, - d + j

n n

and (n -, oo)

(9.5) mse(f 1 (D)) (1 - Z)d 3 3  e - d - e 3
n

By comparison with (9.2), we see that the dominant terms and the term due to

E1  are identical, so that the positive difference between the mean-squared-

errors is approximately:

n (..i e. - eII rd ieI)

ii ii
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where e i is the ith column-vector of E . This difference is usually
-l

negligible, compared to the comon dominant term, n e ,il , for moderately

large values of n .

A similar analysis can be carried out if D is of rank two.
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10. PREDICTIVE VARIANCE AND FORECAST ERROR

There are two second-order central moments of special interest:

the predictive variance,

(10.1) V(D) - Vxini I D}- Ej~iin+l - mpD) ]2 1 i.4- m2 (D) _ 2(D

and the posterior-to-data mean-squared-forecast-error:

(10.2) *(V) E{I n+1 - f1(D)1
2 j D} V(V) + [fl(D) - m 2

If the f1 (D) and f2 (D) obtained previously are exact, then both of

the expressions are identical and equal to f2 (D) - f2 (D) . If credibility
2 1

is only an approximation, then this latter expression may still be a good

approximation to v(D) (note that we now may be using quadratic functions

of the data in f2(D)). Comparing *(V) and v(D) requires knowing how

closely the credibility for the mean approximates the Bayesian predictive

mean.

We can proceed a bit further if we rewrite the mean-squared-forecast-

error as:

(10.3) O(D) -m 2 0) - ml1(V) + E{[f 1(D) - m 1 0)1
2  D

and approximate the first two terms by f2 (D) - f11 (D) The third term

cannot be estimated directly; however, by averaging once more over all

prior values of V , we obtain E([f1(D) - m1 6¢)] 2 - mse [fl(D)] , which

is a natural by-product of our analyses. In summary, then, we would

use the following estimators for (10.1) and (10.2):
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(10.4) v(V) f2 (V) - f2(V)

(10.5) *(D) f2 (D) - i11 (D) + mse [f ()] .

Bhlmann (1970, p. 100) also considersthe problem of estimating

the predictive variance. He breaks v(D) into a "variance part" and

a "fluctuation part", which, in our notation, are:

(10.6) v(D) - [m2 (D ) - mll(D)] + [roll(D) - m2(V)] ,

the posterior-to-data version of c - e + d (cf. (1.5)). He then

approximates the first part by a one-dimensional credibility forecast

12 -11 2(x
using the unbiased sample variance, 2 (n -) (x - )

t (D) - t11(D),ie.

_2[

(10.7) e(D) = m2 (D) - m11 (D) (i - z e)(m 2  m )11 + z e 2

The credibility factor, ze , is a complicated function of n , but, by

making the simplifying assumption of a "normal excess" (e.g., the kurtosis

of p(x I e) is that of the normal density for every 0), he obtains a

simplified form, z = (n - K)/(n - 3) , where K is a complicated ratioe

of marginal moments.

The second factor,

(10.8) d() - mll(V) - m2(V)- E{[mI(D) - ml(i)]2 I }

is approximated by: first, replacing m1 (D) by fl(D) , and second,

averaging over all prior values of D , obtaining: d(V) mse [fl(V)] ,

giving finally:

S
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(10.9) v() (1 - ze)e + zt 2() - t11 (P)] + ose [f(D)]

With our extended use of these statistics, we could presumably

improve Bhlmann's analysis by arguing in the same way that:

(10.10) v(V) - f2 (V) - f1 1 (V) + mse [fl(V)]

However, this is exactly the approximation (10.5) for O(D) , which

must be larger than v(D) if mean credibility is not exact! So, we

would still prefer (10.4) for the estimate of the variance.

The difficult-to-estimate term, d(D) , is, in fact, the posterior-

to-data predictive covariance, E{I[in+ - m (V)][in+2 - mI(D)] I D}

which we know must vanish with n as the true value of 0 is identified. 3

For instance, with the simple-exponential family of Section 6, we have

d(D) - e(V)d/(e + nd) or v(V) < e(V)[1 + (d/(e + nd))] . And, in the

general case, if fl() is close to ml(D) , then we know that the

average (preposterior) value of d(D) is mse [f1 (D)] , which probably

vanishes like mse ff*(V)] - ed/(e + nd)

So, in short, we doubt if the accuracy issues raised here are im-

portant in any realistic application, and expect the errors in using

(10.4), (10.5) to be of the same order of magnitude as the errors in the

underlying predictions f(V)
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11. NUMERICAL EXAMPLES

It should be remembered that important simplifications often occur in

D and E(n) for the usual analytic form assumed for the likelihood and

the prior. For instance, where the likelihood is normal, with possibly

random mean and variance, we have:

m3 (6) - 3v(O)m(e) + m3 (e)

m4 (O) - 3v2 () + 6v()m 2(8) + m 4(8)

where

m(e) - mi(o) and v(e) - m2(e) -2(e)

From this, we see that all eleven moments in (1.4) can be expressed in terms

of moments and cross-moments of m(8) (up to order 4) and v(6) (up to

order 2).

The likelihoods introduced in Examples 1 through 6 of Section 3 have

been characterized by Morris (1982) as the natural exponential families with

quadratic variance functions, i.e., the variance is at most a quadratic

function of the mean. From this, it follows that, for this family, the com-

ponents of m(e) in (5.2) are linearly-dependent functions of the parameter,

and that D is singular. For example, if the likelihood is Poisson (M)

then M(V) - [1 ; W + W2 ; 7]' .

We now consider three numerical examples that illustrate these ideas; in

all examples, the joint credibility forecasts are exactly the Bayesian mean

forecast, for all n . (However, we have not introduced this prior knowledge

into the numerical calculations below!)
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Example A:

Consider Example 7 from Section 3, the Normal(iw - ) , with Normal-

Gamma prior, and with the following hyperparameters: x01 = 0 ; n0 1 - 0;

x02 - 21 ; a - 6.5 . Note that we have chosen a - (no, + 3)/2 so that the

predictive second moment will be in credibility form (3.14), (3.15).

Numerically, we find the eleven marginal moments to be:

M - {1,2.1,1.1,4.3,2.3,1.3,12.037,5.0033,5.1033,2.7589,1.6367,}

and the variance components are:

d -Ej(now)1} - 0.1 ; e - E{w-7'} -1.0

The covariance matrices of Section 5 are:

.10000 .20000 .20000 1.00000 2.00000 2.00000

D.44889 .42667) .4 (2.00000 6.93333 4.48889)

(.20000 .44889 .42667 E 2.00000 4.48889 4.48889)

with (E1)33 - 2.44444 . The independent time constants of Section 6 are

nOl - n02 - 10 and n Ol(n) - 10.52 + (5.73/(n - 1))

For n - 2,10,100 , and 10,000, Figure 1 shows the credibility matrix

Z for the three-dimensional forecasts of (4.2)', together with their corre-

sponding mean-squared errors, the diagonal terms from (9.2). Also shown are

the corresponding independent forecast factors of (2.2), (6.1), (6.2), ar-

ranged in matrix format for easy visual comparison (and thus making (5.9) a

general forecast forula, even with Z diagonal); the corresponding mse's

are also given, and can be gotten also from the diagonal terms of (9.2).
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We remark that:

(1) Because of previous results, ml(D) " fl(D ) - f*(D) and m2 (D) =

f2 (D) - f2(D) , since a - no, + 3 . Thus, the upper part of Z

is diagonal, with z - z2 2  equal to the independent prediction

factors. We also know that ml (D) - f1 (D) (but not equal to

f* (D) , in general); here it is of interest to see how long a

heavier weight is attached to t1(D) instead of the natural sta-

tistic, t1(D)

(2) The mse's for the first two components are, of course, the same

for both predictions. As might be expected, predicting second

moments gives larger mse's than the rose for f1(D) ; however,

the relative rate of decrease with n is about the same. Further-

more, there is only about a 6% increase in mse for using fl(D)

over the exact f11(D)

(3) Both credibility factors approach the identity matrix as n ap-

proaches infinity, as the statistics in t(D) become "fully

credible".

Example B:

Consider Example 4 from Section 3, the Exponential(e) , with Gamma

prior, with hyperparameters: 7-0 1 - 10 ; n0 1 - 10 . The marginal moments

are:

M - {1,2.2222,1.1111,8.3333,2.7778,1.3889,47.619,11.905,7.9365,3.9683,1.9841}

The covariances matrices are:

. . . . . . l n i I. . . . . I I. .. . . I . . . ..



33
S

/.11111 .55556 .27778\ (1.11111 5.55556 2.77778

D = (.55556 2.99824 1.49912j ; E - 5.55556 39.68254 15.87302J

\.27778 1.49912 .74956/ (2.77778 15.87302 7.93651/ 

with (E1)33 - 3.9685 . The hyperparameters were chosen to make m1 - 1.0

and n0 1 - 10.0 , as in Example A, but now, due to the change in distribu-

tions, we have n02 - 13.24 , and nOll(n) - 10.59 + (5.29/(n - 1)) .

Figure 2 shows again the results for n - 2,10,100 , and 10,000, in a

format similar to that of Figure 1.

Notice the following:

(1) As in Example A, ml(V) - fl()- ff(V) ; however, now both f 2 (D)

and f1 1 (D) use all three statistics, particularly tI(D) and S

t1 1 (D) . Now, as n - , we find the surprising result that

2t 1 1 (D) is the preferred predictor for m2(D) , rather than the

"natural" estimator, t2 (D) ; they both have the same expectation,

but the former has smaller variance.

(2) In fact, we can make the following stronger statements. As a
consequence of the exponential assumption only, m2(6) - 2 (e)

for all e , so that m2( ) - 2m11 (D) for any prior. Assumption

of a Gamma prior makes both predictions linear functions of t(e)

and, in fact,we see from Figure 2 that z - 2z (j - 1,2,3)

so that f2(D) - 2f1 1 (0) for all D I

(3) The mse's for independent predictions of the two second moments

are, of course, larger than in the joint predictions, and worst S

for f2(D) , as it is forced into using t2(D) , rather than

t11(D) as its sole predictor. This gives a relative degredation

which climbs about 20%, but, at the same time, all mse's are
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decreasing with n at about the same relative rate. Substituting

t11 (D) for the "natural" predictor of f*(D) would, of course,

reduce the me to four times that of f* (D) , which at its

worst value (n - 2) , is only about 5% larger than the joint

prediction.

(4) The non-convergence of Z to the identity matrix is the conse-

quence of the previously-discussed fact that D is singular.

However, since m2 - 2mll , atl(V) is ultimately "fully credible"

as n - , i.e., no dependence upon prior moments remains in

f2(D) in the limit. We have already proven this directly in (8.6).

Example C:

Consider Example 3 from Section 3, the Poisson(r) , with Gamma prior,

and hyperparameters: kl = 10 ; n01 = 10 . The marginal moments are:

M - {1,2.1,1.1,5.62,2.42,1.32,18.336,6.776,5.456,3.036,1.716}

The covariance matrices are:

10000 .32000 .22000 (1.00000 3.20000 2.20000

.32000 1.04600 .72600 1 E 3.20000 12.88000 7.48000

\.22000 .72600 .50600) (2.20000 7.48000 5.28000)

with (E1)33 = 2.2 . The hyperparameters were again chosen to make mI = 1.0

and nOl = 10.0 , but now n0 2 = 12.31 , and n011 (n) - 10.43 + (4.35/(n- 1))

Figure 3 tabulates the results for n - 2,10,100 , and 10,000 in the

same format as previous examples.
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We notice that:

(1) As in Example A and B, the first moment uses only tl(D) , but the

second moments use all three statistics, with t2 (D) playing a

decreasingly important role. In contrast to Example B, however,

we now find that, as n ( , tt() + is the preferred

-edictor for m2(D) , rather than t2 (D)

(2) This is a consequence of the assumption that the likelihood is

Poisson, for then m2(m) = m((6) + m1(e) for all e , so that

m2(D) - ml(V) + mll(V) for any prior. It is the assumption of

the Gamma prior that makes predictions using only linear functions

of t(V) exact, and in Figure 3 we can see that, in fact, z2j =  0

Z lj + z3j Q - 1,2,3) , so that f2(D) - f1(D) + f11 (D) for all

D(D

(3) The mse's follow the pattern of Example B, with the mse of f(D)

becoming progressively relatively worse than its joint counterpart.

Here, however, to improve the prediction error, one would probably

have to include both tl(D) and t11(D) , as it is not clear that

just one of the latter would be an improvement over using just

t2 (D) . Furthermore, neither of the other statistics would ever

become "fully credible" as n - - , as they are not individually

equal in expectation to m2 , only in sum. Clearly, the best

single statistic to use for m2(D) in the Poisson case is

t1(D) + t11() •

• , • • • • m | m n • n a n .. . . . . . . ." -
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12. COMPUTATIONAL STRATEGIES: CONCLUSION

The last two examples show that some care must be exercised if one

wishes to make independent forecasts where p(x 1 8) is assumed to be in

the QVF-NEF family, remembering that this also includes (fixed numbers of)

convolutions of Examples 1-6, such as the Negative Binomial with fixed

shape parameter. One can, of course, use the combination of "natural"

statistics appropriate to the assumed likelihood. This is particularly

important when we also assume that the natural conjugate prior is appro-

priate.

On the other hand, for an arbitrary prior, the moments will not be

linear functions of the statistics, so that all positions of Z would

be non-zero anyway, as would also be the case if all moments were from

empirical studies. In these cases, Z would approach the identity matrix

as n - , and we expect that the independent forecasts (2.2), (6.1), (6.2)

would be equally good (or equally bad) as the joint forecasts. Clearly,

more computational experience is needed in making this decision.

The great advantage of the joint forecast is that it can always be

used if n > 2 , and, if there is a tendency for certain combinations of

statistics to dominate, it will be revealed automatically. Of course,

if n - 1 , we are forced to use only tl(D) - x1 and t2() - X1 ; the

predictive power will be weak anyway, in most practical cases.

In summary, we have presented an easily implemented three-dimensional

credibility formula that simultaneously approximates the first and second

moments of the Bayesian predictive density. While this approach requires

eleven prior moments from the collective, this calculation is simplified

when familiar analytic forms are assumed for the likelihood. Previous

work has shown that the credibility mean is exact in tl(D) for a wide
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class of likelihoods and priors in which the sample mean is the sufficient

statistic; here we have shown that the second-moment credibility predic-

tions are also exact for five widely-used likelihoods and their natural

conjugate priors, when using the three "natural" statistics in t(D)

For these and other reasons, we believe that these linear prediction

formulae will turn out to be robust in other cases where the distributions

are empirical, or where the exact predictions are known to be non-linear

in the data. We suspect also that, in most cases, it will also be

reasonable to use the simplified, independent forecasts, paying due 3

attention to the remarks above. The authors look forward to hearing

from those who apply this approach to actual prediction problems.

-
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